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A method is proposed for recovering the space--time behavior of an external un- 
steady heat load to a cylindrical body by solving the two-dimensional inverse 
heat-conduction boundary problem. 

When one studies the effectiveness of various materials and structures in a high-tem- 
perature environment, one is interested in an experimental investigation of the space--time 
distribution of heat loads for cylindrical bodies. In many cases the only way to determine 
the thermal boundary conditions is to solve the inverse heat-conduction problem (IHCP). Many 
papers (see, e.g., the bibliography in [i]) have developed methods and algorithms for solv- 
ing IHCP, and the results obtained in these have been applied successfully to investigations 
of unsteady heat and mass transfer. However, in most cases the authors have examined one- 
dimensional heat-conduction models, which do not always adequately describe the actual heat- 
transfer processes. One can cite examples of practical investigations of the thermal condi- 
tions of various structures in power equipment, aircraft and technical equipment where a 
need arises for calculated and experimental determination of the heat flux densities and sur- 
face temperatures of cylindrical bodies by solving the unsteady two-dimensional IHCP. A meth- 
od was proposed in [I] of iterative solution of a two-dimensional inverse problem in extreme 
formulation for bodies of planar form, which can be generalized to body of other form. Be- 
low we consider a method and an algorithm for iterative solution of two-dimensional IHCP in 
the case of a hollow circular cylinder (Fig. i) and present results of a systematic investi- 
gation of this algorithm. 

We assume that on the thermally insulated internal surface r = Rin of a cylindrical 
body, we know the temperature T(% T) and need to find the heat flux density supplied to the ex- 
ternal surface of the body r = R. We shall consider that there is no heat transfer at the 
boundaries ~=0 and ~=~. In this formulation the inverse heat-conduction boundary problem 
is written as follows: 

"OT ( O~T 1 OT 1 OZT ) 
= a + - - - - + ,  , ( 1 )  

O~ \ ~ r Or r z O~ z , 

T(r, , ,  O)= ~(r, ~), (2) 

OT(r, O, ~) OT(r, ~h, ~) OT(Rin, ~, ~) 
. . . .  o, ( 3 )  

O~ a~ Or 

T(Rin, ~, T)= [(% T) (4) 

We require to determine the function 

q~ (% +) = _. ~ aT ( R , ~ ,  +) (5) 
ar 

One promising direction in solving inverse heat-transfer problems is to use extremal 
formulations which include gradient methods for minimizing the discrepancy functional. With 
these methods one can easily construct algorithms to regularize the solution of incorrectly 
posed problems [2, 3]. Methods of the type of steepest descent and conjugate gradients are 
stable with respect to round-off errors, approximations and smoothing [i, 4]. To use these 
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Fig. i. Solution region for the 
two-dimensional inverse heat-con- 
duction problem. The thermally 
insulated boundaries are shown 
cross-hatched. 

one does not require a close initial approximation. They are easily performed on a 
computer, do not require great machine time, and have the property of a universal approach 
to solving both linear and nonlinear inverse problems. It is also important to note that, 
using gradient methods, one can take account of available a priori information on the de- 
sired solution, not only qualitative, but also quantitative information. 

We shall consider the inverse problem formulated as the problem of seeking a function 
of two variables 

P (9, g) = - -  q (9, T)/%, (6)  

giving a minimum of the rms functional 

~m r 

J(P) = Sd'~ ~ IT(RiB, 9, "~)- - f (9 ,  "~)lZdq ~ (7)  
0 0 

for the conditions of Eqs. (2)-(4). 

One of the central questions in the gradient solution of IHCP, on a successful resolu- 
tion of which often depends the efficiency of the computational algorithm, is to construct 
a~ effective procedure for determining the gradient of the functional (7). This procedure 
can be obtained by considering the problem conjugate to Eqs. (1)-(4): 

O, a( 0 2 ~ + - - +  1 1 O, 0 2 _ ~ )  (8) 
Or ~ Or 2 r Or r ~ 09" j ' 

R i n < r < R ,  0 < 9 ~ 9 h ,  O<T~'~%n, 

(r, 9, "~,.)= o, 

(9) 

O~(r, 0, ~) _ O~(r, 9k,+)_ O~(R, 9,~)=0, (10) 
09 09 Or 

O~(Rin, 9, " Q  2[T(Rin ,  9, "~)--~(9,  T)]. (11)  
Or 

As the method of minimizing Eq. (7), we choose the method of conjugate gradients, which 
as the investigations of [i] have shown, has good characteristics for solving incorrectly 
posed inverse problems, compared with the method of steepest descent. In accordance with 
this method, we construct an iterative sequence of the type 

pu+t (9, T) = ph (9, ~) - -  ~h~ k (9, "c), (12)  

where ~h(~, ~) is the direction of descent. 

The coefficient ~k, which determines the depth of descent in going to the next approxi- 
mation~ is found from the condition 
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Fig. 2. Spece--time behavior of the external heat load on a cylindrical wail, re- 
corded by solving the two-dimensional inverse heat-conduction problem: the Solid 
lines are accurate values of q(% /) ; the broken lines are the result of the IHCP 
solution. 

Fig. 3. Illustration of convergence of the iterative process in solving the IHCP 
with exact original data for ~=90~176 i) the desired solution; 2) first 
approximation; 3) ninth approximation; 4) 17th approximation; the points are ex- 
perimental; T is in sec. 

OJ(Pk+*(% J) = O. (13) 
0H 

The corresponding optimal value is given by the expression 

.[d~ ,[ [T(Rin., % 'J--f(% "J]AT(~(% ~), % x)d~ 
0 0 

, (14) ~ 
h ~rrt <oh 

0 0 

where the temperature increment 
lem: 

BAT { OZAT 1 OAT 1 02AT 
a + - -  + - -  (15) 

OT \ Or 2 r Or r z 0r 

R i n < r < R ,  O < q ~ < % ,  0 < 1 7 ~ ' ~ ,  (16) 

AT(r,  % O)= O, 
(27) OAT(r, O, "c) _ OAT(r, gth, T) OAT(Rim % ~) : 0 ,  

09 09 Or 

SAT(R, ~, ~) _ AP(9, g. (18) 
Or 

Thus, to solve the two-dimensional IHCP (1)-(4) we have the iterative algorithm (6)- 
(12), (14)-(18). In accordance with the algorithm considered, to obtain the next approxima- 
tion we must solve three boundary problems (1)-(4), (8)-(11), and (15)-(18). It is conven- 
ient to convert the conjugate problem (8)-(11) to inverse time by introducing the variable 
t = Tm--~. In this case for all the boundary problems we can use a single computational pro- 
cedure. On the basis of the above technique for solving a two-dimensional IHCP, we con- 
structed a computational algorithm and wrote a program in Fortran language for the Minsk-32 
computer. To solve the boundary problems (1)-(4), (8)-(11), and (15)-(18) in the algorithm, 
we used the numerical method of variable directions [5]. To investigate the efficiency (ac- 
curacy of the results obtained and machine time used) of the proposed method, we conducted 
numerical experiments on specially chosen model problems. For the numerical solution we 

AT(~(% ~), % z) is determined by solving the boundary prob- 
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Fig. 4. Results of solving the IHCP at the exact original 
data (a), and at perturbed but previously smoothed original 
data (b). For a: i) exact values of q(% T) ; 2) 17th ap- 
proximation; for b: i) exact values of q(% ~) ; 2) 18th ap- 
proximation; 3) 19th approximation; I) ~=0~ 180~ II) ~=45~ 
135~ III) ~=90 ~ The quantity T is in sec. 

used various space--time grids, including step changes in Fourier number in the range 0.02 
~AFo=aAT/b2~2 , where b is the thickness of the cylinder wall. The quantity AFo can serve 
as an independent measure of the effectiveness of the problem solved. It should be noted 
that for AFo < 0.3-0.5 the results of solving this inverse problem with the help of a direct 
algebraic method, based on the integral form of the IHCP (Chap. 4 in [i]), have a strongly 
oscillatory character. 

Below we present some results of the numerical modeling. For a space mesh N r = 40, 
N ~ = 40 and N T = 40 the machine time to perform one iteration was 21 min. The numerical 
experiment showed that decreasing the number of time steps to N T = 20 led to loss of accu- 
racy in recovering the boundary conditions. The technical capability (the speed) of the 
Minsk-32 computer allows a solution to an IHCP for N T = 60, and it turned out that for the 
example considered, an increase in the number of time steps (from N T = 40 to N T = 60) did 
not produce a noticeable increase in the accuracy of solving the IHCP. The results of the 
numerical modeling shown in the figures were obtained for N T = 40. Figure 2 shows the form 
of the model heat load. The convergence of the iterative sequence to the desired solution 
at the section ~=90 ~ (0~ ~ is shown in Fig. 3. During the computations performed, 
we observed no appreciable oscillations in the solution beyond a finite number of approxima- 
tions. With this behavior of the iterative process, one can shorten the search for a solu- 
tion, based on comparing two successive approximations according to the condition 

max l qh+~ (~,~, T~) - -  qh (%, ~ ) l  < e, (19)  

n = l ,  2 . . . . .  N, m = l ,  2 . . . . .  M. 

In the examples considered by using unperturbed original data one can obtain quite an 
accurate approximation to the desired solution (Fig. 4a). Figure 4b shows an example of re- 
covering the heat flux density using the perturbed original data. Perturbation of the origi- 
nal data (in temperature) was accomplished according to the relation 

T ~ (% T) = T(% T) + 8o~, (20) 

where 60 is the maximum applied perturbation (in the case considered 60 = 5% of Tmax); ~ is 
a random quantity with a uniform distribution law (--I~.~i). 

Before solving the IHCP the initially perturbed original data according to Eq. (20) 
were smoothed using the procedure of [6], based on the second-order smoothing of Tikhonov 
[7]. The solution of the IHCP, obtained using the smoothed original data, shows that it is 
possible in practice to use this method of recovering external boundary conditions. 
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The results of the numerical modeling allow us to conclude that the accuracy in recov- 
ering the heat flux density q(%T) is comparable with that in the original data. The ma- 
chine time in solving a two-dimensional IHCP proved to be allowable for many practical ap- 

f 

p!ications, especially when one uses a high-speed computer of the type EC-1040 or BESM-6. 

In conclusion, we note that the results obtained can easily be extended to a two-dimen- 
sional inverse heat-conduction problem, described in a spherical coordinate system, for the 
case of an axisymmetric heat load. In addition, the method described may be generalized to 
a nonlinear formulation of a two-dimensional heat-conduction problem. 

NOTATION 

a, diffusivity; T, temperature; T*, perturbed values of temperature; r, time; r, ~ , 
polar three-dimensional coordinates; Rin , radius of inside surface of cylindrical wall; R, 
radius of external surface of cylindrical wall; ~m, largest values of the variables 
and T; %, thermal conductivity; ql, external heat flux density; J, rms functional; ~, con- 
jugate variable; ~, direction of descent; B, depth of descent; AT, temperature increment; 
AFo, Fourier number step; Nr, N ~ , NT, number of steps in space--time mesh; ~o, maximum value of the 
perturbation applied at r(%~) ; ~, random value with uniform distribution law. 
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